
Towards High-Performance Prediction Serving
Systems

Yunseong Lee
Seoul National University

Seoul, South Korea
yunseong@snu.ac.kr

Alberto Scolari
Politecnico di Milano

Milano, Italy
alberto.scolari@polimi.it

Matteo Interlandi
Microsoft

Redmond, WA
mainterl@microsoft.com

Markus Weimer
Microsoft

Redmond, WA
mweimer@microsoft.com

Byung-Gon Chun
Seoul National University

Seoul, South Korea
bgchun@snu.ac.kr

Abstract

Machine Learning models are often composed of sequences of transformations.
While this design makes it easy to decompose and efficiently execute single model
components at training time, predictions require low latency and high-performance
predictability whereby end-to-end and multi-model runtime optimizations are
needed to meet such goals. This paper sheds some light on the problem by introduc-
ing a new system design for high-performance prediction serving. We report some
preliminary results showing how our system design is able to improve performance
over several dimensions with respect to current state-of-the-art approaches.

1 Introduction

Many Machine Learning (ML) frameworks such as Google TensorFlow [3], Facebook Caffe2 [2],
Scikit-learn [8], or Microsoft’s Internal ML Toolkit (IMLT) allow data scientists to declaratively
author sequences of transformations to train models from large-scale multi-dimensional input datasets.
The sequences internally are represented as Directed Acyclic Graphs (DAGs) of operators comprising
data transformations and featurizers (e.g., string tokenization, hashing, etc.), and ML models (e.g.,
Neural networks, Linear models, etc.).1 Figure 1a shows an example DAG for text analysis whereby
input sentences are classified according to the expressed sentiment.

When trained DAGs are served for prediction, the full set of operators is deployed altogether to
massage and featurize the raw input data points before ML model scoring. Training and prediction
DAGs have however different system characteristics: for instance ML models at training time have
to scale over large datasets, while, once trained, they can behave as other regular featurizers and
data transformations; furthermore, prediction DAGs are often surfaced for direct users’ access and
therefore require low latency, high throughput, and high predictability. Specifically, prediction systems
have three main performance requirements in order to be usable by consumers and be profitable
for ML-as-a-service providers: (R1) latency has to be minimal—in the order of milliseconds—and
predictable because scoring is often one segment in more complex services (e.g., smart phone or
web applications) which potentially provide a Service Level Agreement (SLA); (R2) small resource
usage—such as memory and CPU—to save operational costs; and (R3) high throughput to handle
as many concurrent requests as possible. Existing prediction serving systems, such as Clipper [1]

1IMLT implements dozens of pre-defined operators and ML algorithms; IMLT is extensible and users
implement their own custom operators and ML algorithms in C#.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.



and IMLT itself, focus mainly on ease of deployment, whereby model DAGs are considered as black
box and therefore only certain “DAG-agnostic” set of optimizations such as caching and buffering
are possible. The black box approach works well when the models to be served are small in number,
while our experiments show that there is a limit to the number of models that can be served on a
single machine (related to R2) without loosing on throughput and latency (requirements R1 and R3).
Section 2 contains a more detailed description of the limitations of existing systems.

To address the aforementioned performance requirements, in this paper we propose a system for
scoring models authored in IMLT2, borrowing ideas from the database and systems community.
Starting from the observation that trained DAGs often share operators and parameters (such as weights
and dictionaries used within operators), we introduce a Parameter Store where operators’ parameters
are consolidated and shared in order to minimize memory footprint (R2). A logical representation of
the DAG of operators composing the model is saved along with the related parameter mappings. To
address R1, logical representations of models are compiled into stages: single scheduling units where
multiple operators are executed together to reduce overheads such as memory allocation and chains
of virtual function invocations. Lastly, event-based scheduling of stages [10] is used to increase
throughput through DAGs (R3) while maintaining target latency and memory footprint.

Using 300 DAGs used internally at Microsoft, and implementing different versions of the sentiment
analysis models of Figure 1a, we show the impact of the above design choices with respect to baseline
IMLT. Our experiments mirror production-like settings where many customers train sentiment models
(with similar structures) on their data. Compared to IMLT, we are able to improve the performance
over different dimensions; specifically, we improve the memory footprint by 43.1 times and reduce
the latency by up to 87 times.

All the experiments reported in the paper were carried out on a Windows 10 machine with 2 × 8-core
Intel Xeon CPU E5-2620 v4 processors at 2.10GHz and 32GB of RAM.

“This is a review”

Score

Tokenizer
Char 

Ngram

Word

Ngram

Concat

Linear

Regression

(a) A DAG for sentimental analysis from text
inputs consisting of operators for featurization
(ellipses), followed by a ML model (diamond).

…

DAG1

DAG2

<DAG1, “foo”>

<DAG1, “bar”>

<DAG2, “baz”>

Thread

(b) Each DAG is compiled as a chain of virtual function calls.
When a prediction request is issued, a thread is dispatched to
execute the chain as a single (black box) function call.

Figure 1: An example of a model DAG and how existing systems handle the prediction requests.

2 Limitations of State-of-the-Art Prediction Serving Systems
Nowadays, several “intelligent" services such as Microsoft Cortana speech recognition, Netflix movie
recommender or Gmail spam detector depend on ML model scoring capabilities and are currently
experiencing a growing demand. This fosters demand for research in prediction serving systems in a
cloud setting, where trained models coming from data science experts are operationalized.

Data scientists prefer to use high-level declarative tools such as IMLT (or TensorFlow and Scikit-
learn) for better productivity and easy operationalization. IMLT, as other systems, aims to minimize
the overhead of deploying trained DAGs in production by serving trained DAGs into (black box)
containers3. This design obfuscates the semantics of each served model and prevents the system from
controlling and optimizing the internal execution of the DAG and its operators. Therefore, under
this approach, there is no principled way neither for sharing optimizations between DAGs, nor to
improve DAGs execution end-to-end. As depicted in Figure 1b, inside each container, model DAGs
are compiled Just-In-Time (JIT) as a chain of virtual functions calls; invoking the function chain

2IMLT is a C# library that runs on a managed runtime (e.g., garbage collection and Just-In-Time (JIT)
compilation). Unmanaged code can be employed to speed up processing when possible.

3Note that while TensorFlow Serving [4] is slightly more flexible since users are allowed to split model
DAGs and serve them into different containers (called servables), this process is manual and not automatic.

2



(e.g., predict()) returns the result of the prediction, by pulling the input through the operators in
the call chain, similarly to the well-known Volcano-style iterator model of databases [5]. To optimize
the performance, IMLT (and systems such as Clipper among others [1]) apply techniques such as
handling multiple requests in batches, and caching the results of the prediction if some queries are
frequently issued for the same DAG. These techniques assume no knowledge and no control over the
DAG, and are unaware of its internal structure. However, if we consider a large-scale service where
the prediction requests are made over thousands of models (e.g., a web-service with personalized ML
models), we observe that existing systems can hardly achieve the performance goals mentioned in
Section 1 for the following reasons:

Memory waste: Containerization of DAGs disallows any sharing of resources between DAGs,
therefore only a few (tens of) models can be served per machine (violation of R2). Conversely,
ML frameworks such as IMLT have a known set of operators to start with, and models trained over
similar datasets have a high likelihood of also sharing parameters. For example, IMLT suggests
default training pipelines to users given a task and a dataset, which leads to many DAGs with similar
structure and common objects and parameters such as dictionaries. To better illustrate such scenario,
we pick a sentiment analysis task with 300 different versions of the DAG. Figure 2 shows how many
different (parametrized) operators are used, and how often are they used within the 300 DAGs. Many
operators can be shared between DAGs, therefore, allowing more aggressive packing of models: 5
operators are present in all DAGs, whereas the remaining are used from 40% to 90% of DAGs with
only a few DAGs having peculiar operators. This suggests us that the resource utilization of current
black box approaches can be largely improved.

5 10 15
Distinct operators (identified by their parameters)

0

20

40

60

80

100

Pr
ob

 [)
 ∈

 P
ip

e 
in

es
] (

%
)

CharNgram
WordNgram
UDF
Hash
Term

Concat
Tokenize
Normalizer
DropColumns

(a) Ngram operators are categorized into 2 groups, each of which has multiple
versions (i.e., operators with different parameters). Operators in the same
group and the same version can be shared by multiple DAGs.

Distinct ML models
0

20

40

60

80

100

Pr
ob
 [x

 ∈
 P
ip
el
i 
es
] (
%
) 94.9

3.81.4

Fas%Fores%
Fas%Tree(0-1)
Li earRegressio 

(b) 3 different type of ML
models are used, each of
which has distinct parameters.

Figure 2: Probability for operators/models to be the same between the 300 different DAGs for
sentimental analysis trained on similar datasets.

Lazy materialization: IMLT employs a pull-based execution model that lazily materializes input
vectors, and tries to reuse existing data buffers for intermediate transformations. This largely decreases
the memory footprint and the pressure on garbage collection at training time. Conversely, this design
forces memory allocation along the data path, therefore making latency of predictions suboptimal
and hard to predict. Additionally, DAGs are typically authored in a high-level language with generics.
At prediction time, IMLT deploys the DAGs as in the training phase, which requires reflection
for type inference and JIT compilation. In general, the above problems result in difficulties in
providing meaningful SLAs by ML-as-a-service providers (violation of R1). Figure 3a describes this
situation, where the performance of hot predictions over a DAG with memory already allocated and
JIT-compiled code is more than an order of magnitude faster then the cold version for the same DAG.

Coarse-grained scheduling: Scheduling CPU resources carefully is essential to serve highly con-
current requests. Under the black box approach: (1) a thread pool can be used to serve multiple
concurrent requests to the same DAG; (2) for each request, one thread is responsible for the execution
of a full DAG sequentially, where one operator is active at each point in time; (3) shared operators
might be instantiated and evaluated multiple times independently; and (4) when single operators
are multi-threaded, resource contention situations can arise because of poor coordination between
(independent) instantiations of the same operators. Furthermore, DAGs are composed of operators
with different performance characteristics as depicted in Figure 3b where the latency breakdown of
the sentiment analysis DAG of Figure 1a is presented. These considerations lead us to the conclusion
that in order to achieve better throughput (requirement R3), better scheduling decisions have to be

3



41.141.01
Latency (normalized, log-scaled)

0
25
50
75

100

Pr
ob

 [l
at
en

cy
 ≤

  
] (
%
)

hot
cold

(a) Average CDF of latency of prediction requests of 300 DAGs;
we denote the first execution as cold, the subsequents as hot.
The solid and dotted vertical lines mark the 99% pctl. The plot
is normalized over the latency goal (black vertical line).

0% 20% 40% 60% 80% 100%
Percentage

23.1 34.2 32.7

0.3

9.6

CharNgram WordNgram Concat LinReg Others

(b) Latency breakdown of a sentiment analysis
DAG: each frame represents the relative wall
clock time spent on an operator.

Figure 3: Execution of single pipelines in IMLT.

implemented at the (shared) operator level instead of at the DAG level. To further emphasize this
point, Figure 4 shows how, due to resource contention, throughput decreases in current IMLT as we
load more DAGs for prediction.

4 8 16 32 64 128
Number of DAGs

0

1

0.6

Th
ro
ug

hp
ut
 (n

or
m
al
ize

d)

Figure 4: Fixed the total amount of threads, as the number of concurrently served DAGs increases,
resources become saturated and the throughput (normalized by the y|x=4) starts to drop (x ≥ 16).

Now that we have highlighted several inefficiencies gripping the current prediction serving systems,
we are going to introduce our system design.

3 System Design

Based on the observations of Section 2, we argue that the three system requirements R1, R2, and R3
can be met if we optimize the execution of prediction both horizontally end-to-end and vertically
among multiple model DAGs.

End-to-end Optimizations: The operationalization of models for prediction should focus on execu-
tion units making optimal decisions on how data is processed while maintaining low and predictable
latency (R1). Such execution units should: (1) avoid memory allocation on the data path; (2) avoid
creating separate routines per operator as possible, which are sensible to costly branch mis-prediction
and poor data locality [7]; and (3) avoid reflection and JIT compilation at prediction time.

Multi-model Optimizations: To take full advantage of the fact that pipelines often use similar
operators and parameters (Figure 2), shareable components have to be uniquely stored in memory
and reused as much as possible to achieve optimal memory usage (R2). Similarly, scheduling units
should be shared at run-time and resources properly managed, such that multiple prediction requests
can be evaluated in a pipelined fashion (R3).

Following the above guidelines, we have designed a prototypical prediction system composed of
the following layers: a caching layer where operators and parameters are globally maintained into
a parameter store and shared among DAGs; a mapping layer where a logical representation of
operators composing DAGs, and related parameters, is kept. Logical representations are analyzed and
compiled Ahead-Of-Time (AOT) into efficient physical units called stages where memory resources
and threads are pooled. Finally, a scheduling layer is in charge of the execution of each stage using
an event-based approach, where prediction requests are pushed to each stage composing the model.
Figure 5 pictorially summarizes the above description; note that only the latter part is executed at
prediction time, whereas the parameters and logical-to-physical mapping are computed offline.

Next, we will describe each layer composing our envisioned high-performance prediction system.

4



Logical Representation

Parameter Store

DAG1

Mapping

Layer

Caching

Layer

Logical 

Stages

DAG2

Operators’

 Parameters

S1
S2 S3

S1
S2 S3

(a) Before serving predictions, DAGs are converted to
sequences of stages. Operators’ parameters are cached
into the Parameter Store. The Logical Representation
keeps all the mapping information above.

Scheduling

Layer

Logical Representation
DAG1 DAG2

<DAG1, “foo”>

Physical

Stages

Thread-poolEvent Queue

S1 S2 S3 S1 S2 S3

Parameter Store

(b) When a prediction request is issued, physical stages
are assembled from the Logical Representation. Each
stage is composed of the parameters fetched from the
Parameter Store, an event queue, and a thread-pool.

Figure 5: System design optimized for prediction serving.

3.1 Caching Layer

0 50 100 150 200 250
Number of DAGs

1

43.1

M
em

or
y 
us

ag
e

(n
or
m
al
ize

d,
 lo

g-
sc

al
ed

)

Without cache
With cache

Figure 6: Cumulative memory usage of the model DAGs with and without caching layer.

The Caching Layer design is based on the insights of Figure 2: since many DAGs have similar
structures, sharing operators and, when possible, also operators’ state (parameters) can considerably
improve memory footprint, and consequently the number of predictions served per machine. An
example is language dictionaries used for input text featurization, which are often in common among
many models and use a relatively large amount of memory.

The Parameter Store is populated offline: when a new model DAG is deployed, the operators involved
and their parameters are identified; new parameters are kept in the Parameter Store, while parameters
that already exist are ignored and the DAG is rewritten to reuse the previously loaded one. The
caching layer enables considerable memory savings, represented in Figure 6: for the 300 example
DAGs we analyzed, the Caching Layer reduced the memory consumption by a factor of 43.1x.

3.2 Mapping Layer

Performance improvement (normalized, log-scaled)

Staging

IMLT

1750

538
3.3x

87

1

3.3x

Cold
Hot

Figure 7: Performance improvement (in terms of latency, higher is better) to execute a single DAG
with the staging approach.

While the Parameter Store is populated, the mapping layer builds a logical representation of each
input model DAG composed of operators’ metadata (e.g., type) and links to related parameters (state)
in the Caching Layer. Offline, the logical representation is AOT-compiled into parameterizable
execution units called stages.4 Inside each stage, (logical) operators are fused together when possible
to improve memory locality and end-to-end performance. For the moment, we use simple rules to
compile set of operators into stages; in the future, we will explore how further optimizations can be

4Our prototype currently applies heuristics in compiling stages into optimized code; automatic compilation
with general rules is in progress.

5



added to the compilation phase. Each stage is designed so that no memory allocation occurs along
the data path: when instantiated (by the Scheduling Layer described next), each stage is dynamically
fed with a set of pre-allocated buffers and the model-specific parameters stored in the Caching Layer.

By compiling operators into stages and by sharing common state, the Mapping Layer is able to obtain
a considerable reduction in latency as shown in Figure 7: namely a 87 times speedup in latency for
the cold case and a 3.3 times speedup for the hot case. This design and related optimizations are
currently limited to DAGs written in IMLT. Our goal is, however, to target unified model formats such
as [6]; this will allow us to apply the discussed techniques to models from other ML frameworks.

3.3 Scheduling Layer

Once model DAGs are assembled and compiled into stages (offline), they are deployed for execu-
tion in an environment where they share resources with other DAGs. Therefore, scheduling them
appropriately is essential to ensure scalability and optimal machine utilization while guaranteeing the
performance requirements.

The Scheduling Layer coordinates the execution of multiple stages via an event-based scheduling
mechanism similar to SEDA [10]: each stage is equipped with an input buffer and a thread pool;
intermediate results are wrapped as events that are then routed through the proper set of stages
together with related parameters (as shown in Figure 5b). Benefits of this mechanism are that stages
can now be pipelined, and the Scheduling Layer can assign more resources to slow stages/operators
(as from Figure 3b). For further optimization, though not added yet, orthogonal techniques such as
batching at the level of stages or DAGs, can be employed as in other prediction serving systems.

The drawback of this approach is that overheads due to buffering and context switching can be
introduced on the data path. Such overheads are, however, related to the system load and therefore,
controllable by the scheduler. Exploring this trade-off is in progress.

4 Conclusion and Future Work

Inspired by the growth of ML applications and ML-as-a-service platforms, this paper identified the
key requirements for ML prediction-serving systems, namely low latency, high throughput, and high
resource utilization, which existing systems fall short in guaranteeing as they focus on the ease of
deployment rather than on optimizing the model execution. Conversely, this work focuses on laying
down optimizations for the end-to-end execution of prediction DAGs by sharing parts of the execution
pipeline through pre-optimized stages and through the shared model state. To achieve this result, we
designed three layers, namely the Caching layer, the Mapping layer and the Scheduling layer, which
inspect each incoming DAG to identify shared and exclusive state and allow optimized execution on
the available resources. Experiments with production-like DAGs show the validity of our approach in
achieving an optimized execution.

As a future work, we are considering to expand the Scheduling layer over heterogeneous hardware,
augmented with GPUs and FPGAs for a more efficient and predictable computation. Recent work
[9] has started exploring the acceleration of ML DAGs on FPGA, highlighting potential gains of
employing such accelerators, whose characteristics are well suited to some ML operators. Therefore,
in a heterogeneous system, the Scheduling layer can be augmented with FPGA control and decide to
schedule some stages on such resources. In this scenario, the Scheduling layer must take into account
two major costs. The first cost, which incurs only at the beginning, is programming the FPGA logic
with the stage, which is in the order of few seconds; this cost must be accurately accounted, as it
may impact the latency of the whole system. The second cost is the data movement cost, as current
FPGA chips are accessible only through a PCIe bus with a latency in the order of microseconds and
good performance only in case of sequential memory accesses. Therefore, batching is essential in
this scenario to achieve good performance through an FPGA-based accelerator.

Acknowledgments

Yunseong Lee and Byung-Gon Chun were partly supported by Institute for Information & communica-
tions Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No.2017-0-01772,
Development of QA systems for Video Story Understanding to pass the Video Turing Test).

6



References
[1] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and I. Stoica. Clipper: A low-latency

online prediction serving system. In NSDI, 2017.

[2] Facebook. Caffe2, 2017.

[3] Google. TensorFlow, 2016.

[4] Google. TensorFlow serving, 2016.

[5] G. Graefe. Volcano: An extensible and parallel query evaluation system. IEEE Trans. on Knowl. and Data
Eng., 6(1):120–135, Feb. 1994.

[6] Microsoft and Facebook. Open Neural Network Exchange (ONNX), 2017.

[7] T. Neumann. Efficiently compiling efficient query plans for modern hardware. Proc. VLDB Endow.,
4(9):539–550, June 2011.

[8] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay.
Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12:2825–2830, Nov. 2011.

[9] A. Scolari, Y. Lee, M. Weimer, and M. Interlandi. Towards accelerating generic machine learning prediction
pipelines. In IEEE ICCD, 2017.

[10] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture for well-conditioned, scalable internet services.
In SOSP, 2001.

7


	Introduction
	Limitations of State-of-the-Art Prediction Serving Systems
	System Design
	Caching Layer
	Mapping Layer
	Scheduling Layer

	Conclusion and Future Work

