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Abstract—The performance of distributed machine learning
systems is dependent on their system configuration. However,
configuring the system for optimal performance is challenging
and time consuming even for experts due to the diverse runtime
factors such as workloads or the system environment. We present
cost-based optimization to automatically find a good system
configuration for parameter server (PS) machine learning (ML)
frameworks. We design and implement Cruise that applies the
optimization technique to tune distributed PS ML execution auto-
matically. Evaluation results on three ML applications verify that
Cruise automates the system configuration of the applications to
achieve good performance with minor reconfiguration costs.

I. INTRODUCTION

Machine learning (ML) systems are widely used to ex-
tract insights from data. Ever increasing dataset sizes and
model complexity gave rise to many efforts towards efficient
distributed machine learning systems. One of the popular
approaches to support large-scale data and complicated models
is the parameter server (PS) approach [1], [12], [16]. In this
approach, training data is partitioned across workers, while
model parameters – which compose the global model being
trained – are partitioned across servers. During training, each
of the workers computes model updates using the allocated
data and sends the model updates to the corresponding servers.
Workers then fetch fresh models from servers in order to work
with the latest model parameter values. Servers, meanwhile,
apply the model updates received from workers and send the
latest model parameter values back to workers as inquired.
This process occurs iteratively during the course of the ML
job until the global model converges. The performance of this
approach is crucially dependent on choosing the right system
configuration1 : the number of workers and servers as well as
the training data and model partitioning across them [24].

Current PS implementations assume system configuration
to be static: the configuration is chosen before training com-
mences and remains unchanged until job termination [4], [5],
[7], [23]. However, as we illustrate in Section II-B, choosing
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1ML training systems have two types of configurations: system and algorith-

mic configurations. Algorithmic configurations include hyper-parameters such
as learning rate and batch size. In this paper, we focus on system configuration
parameters.

the best system configuration is challenging; optimal system
configuration parameters vary widely for different algorithms,
hyper-parameters, and environments. Furthermore, the best
configuration changes during runtime as the total amount of
available resource changes.

We present cost-based optimization that finds a good system
configuration for PS-based frameworks. We extend a PS-
based ML framework to build Cruise that automatically tunes
its system configuration with the optimization technique. We
would like to ideally model convergence time, but this problem
is an open research question that requires modeling algorithms
themselves. Instead, Cruise focuses on the system aspects
and models performance of workers, as an optimization goal,
analytically with the system’s runtime statistics, and computes
optimal configurations by solving the optimization problem.
Cruise applies the new configurations efficiently during run-
time by elastically changing allocated resources and migrating
data. The reconfiguration allows us to make the best use of
given resources and also opportunistically available resources.

Our evaluation shows that our cost model is valid and Cruise
finds a good system configuration automatically to optimize
the performance. With three widely-used machine learning
workloads, we demonstrate that the configuration found by
Cruise performs close to the optimal configuration that we
find exhaustively, with the difference at most 6.5%. Cruise
reduces the training time by up to 58.3% compared to static
configuration within tens of seconds reconfiguration overhead.

II. BACKGROUND

A. Parameter Server ML Framework

A typical machine learning (ML) process engages itself in
building models from input data and such training process
could be designed in various ways. In many recent ML
systems, the notion of parameter servers (PS) is used to
manage training models [5], [7], [16], [23].

The PS architecture shown in Figure 1 consists of work-
ers and servers. Machine learning is an iterative convergent
process, where an epoch is the unit of iteration. An epoch is
normally defined as a full scan of the entire training data, but in
asynchronous ML systems, an epoch can refer to the process
of scanning the same number of training data instances as
the entire dataset. Training data is partitioned across workers



App. NMF MLR LDA
(18, 14) 1.30x 2.29x Best
(23, 9) Best 1.12x 1.21x
(27, 5) 1.66x Best 1.60x

(a) Case 1. Epoch time comparison in different
algorithms.

#Topics 400 4K
(18, 14) Best 1.44x
(23, 9) 1.21x Best
(27, 5) 1.60x 1.20x

(b) Case 2. Epoch time comparison in
different hyper-parameters in LDA.

Env. m4.large m4.xlarge
(34, 18) Best 1.10x
(38, 14) 1.08x 1.05x
(42, 10) 1.48x Best

(c) Case 3. Epoch time comparison in
different VM instance types in NMF.

TABLE I: Epoch times varying numbers of workers and servers for different algorithms, hyper-parameters, and virtual machine instance
types. (W , S): W denotes the number of workers and S denotes the number of servers. For each column, a cell presents a ratio between
the epoch time of the configuration and the optimal epoch time.
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Fig. 1: Parameter server ML framework.

to achieve data parallelism. Workers execute the code to
compute gradients for a model using each of its allocated data
and communicate with servers to contribute towards model
convergence. The model, similar to input data, is split into
many partial models and distributed across servers.

Each server supports push and pull requests from workers
for the partial models it is assigned to. The literature [21]
contains multiple proposals for scheduling the worker-server
communication. We focus on the common push/pull model
below. A worker issues a push request when it wants to update
a certain portion of a model. The request consists of a key,
identifying the partial model to update, and the corresponding
update data. When the server with the partial model receives
a push request, it first searches for the model value associated
with the key, and then applies the update by calling a user-
defined update function defined in the server code. A worker
sends a pull request when it needs to access a certain part of
the model. Unlike push requests, a pull request only contains
the key associated with the necessary partial model. After
receiving a pull request, the server with the partial model
fetches the corresponding model data and replies to the sender
worker by transmitting a pull response.

In the figure, Executor is an environment on which the ML
application code (e.g., worker computation code and server
model update code) runs. Executor takes care of low-level
system supports such as initializing and maintaining network
connections between nodes. In this paper, we consider a cluster
environment where each Executor runs in a container obtained
from a Resource Manager such as YARN and Mesos.

B. System Configuration Challenges

The system configuration of a PS system includes the
allocation of worker and server roles to available containers,
as well as the partitioning of the training data across workers
and the model parameters across servers. A good system
configuration is essential for the performance of the machine
learning system [24]. However, optimal system configurations
that produce minimal training time are difficult to find, even
for system experts. This is because, first, predicting how
ML application code translates to actual running time - how
much time each step takes - is nontrivial. Even if we were
to estimate the exact running time for an algorithm, there
may exist many different implementations for that particular
algorithm, all having slightly different running times. Second,
even for the same algorithm, using different hyper-parameters
can change the application’s computation or communication
overhead. Finally, the capabilities of the environment on which
the applications run vary from cluster to cluster.

We illustrate the challenges with experiments that vary
algorithms, hyper-parameters, and machines in Table I. In each
case, we fix the total number of machines, assign a fraction
of the machines to run workers, and assign the rest of the
machines to run servers. We experiment with all possible
worker and server configurations to compare epoch time of
different configurations.

All experiments in Tables Ia and Ib were run on a cluster
of 32 AWS EC2 r4.xlarge instances (4 CPU vCores, 30.5GB
memory, and 1.25 Gbps network bandwidth), and Table Ic
shows epoch time of an ML application on either a cluster
of 52 m4.large instances (2 CPU vCores, 8GB memory, and
0.5 Gbps network bandwidth) or a cluster of 52 m4.xlarge in-
stances (4 CPU vCores, 16GB memory, and 1.0 Gbps network
bandwidth). In the table, NMF denotes Non-negative Matrix
Factorization, MLR denotes Multinomial Logistic Regression,
and LDA denotes Latent Dirichlet Allocation. We present the
details of these algorithms in Section V-A.

Case 1: ML algorithm. Different ML algorithms show
different optimal configurations. From Table Ia, with (W:27,
S:5) MLR achieves the smallest epoch time, whereas LDA
runs 1.6 times slower with this configuration compared to
LDA’s optimal configuration (W:18, S:14). This is because
MLR is more compute-intensive than LDA, thus requiring
more workers for smaller epoch time.

Case 2: Hyper-parameter. Hyper-parameter values affect
the optimal configuration of an ML application. A hyper-



parameter in LDA is the number of topics to categorize
documents. Increasing the number of topics makes both com-
putation and communication more expensive, but they are
affected differently. Table Ib shows that (W:18, S:14) is the
best configuration for 400 topics but is 1.44 times slower than
the best configuration (W:23, S:9) for 4K topics.

Case 3: Machine environment. The specification of the
cluster on which jobs run also heavily affects the best con-
figuration due to varying computation and communication
capabilities. Running NMF on different clusters, we observe
that the best configuration varies drastically as shown in
Table Ic. When we use AWS EC2 m4.xlarge instances, the
best configuration is (W:42, S:10), which is 1.48 times slower
if the same configuration of m4.large instances, compared to
the m4.large best configuration (W:34, S:18).

The three factors investigated above demonstrate that dis-
covering the optimal system configuration is challenging. Even
worse, there are other factors such as algorithm implemen-
tation and dataset that can also affect the performance for
different configurations. Since the problem space is too broad,
it is hard to predict the performance of an ML application
given a specific setting. This motivates adapting to optimal
configurations automatically.

III. FINDING GOOD SYSTEM CONFIGURATION

In this section, we describe our cost formulation of the
training epoch time along with our model assumptions, and
how we minimize epoch time by using the cost model to
find values for system configuration parameters – namely, the
number of workers and servers as well as the training data and
model partitioning across them.

A. Cost Model

Given the PS architecture, we define the cost C of the
entire system to be the maximum of the time for each
worker i to process the assigned training data in each epoch
(Ci: epoch time). By minimizing the maximum epoch time
(C), we can improve the absolute performance as well as
balancing all workers’ performance. Unbalanced training can
slow down the learning process because training data does not
contribute evenly to the global model parameters. In a general
system consisting of heterogeneous containers2 and uneven
data partitions, Ci is usually different for each worker.

C = max
i

Ci (1)

A worker’s epoch can be further split into smaller compo-
nents. Figure 2 depicts the timeline of a worker’s epoch. A
worker first performs computation on its training data using
the current model to produce model gradients. The worker
then communicates with the servers to send its gradients via
push requests and fetches the updated model via pull requests.
Depending on the algorithm and additional job parameters,

2We focus on modeling heterogeneous containers because of heterogeneous
hardware or virtual machines. Transient stragglers are not part of the model.
We borrow work stealing techniques from prior work [10] to handle stragglers.
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Fig. 2: A worker’s epoch

workers may divide the training data into several smaller
subsets and go through a computation-communication cycle
for each subset. Such computation-communication cycles are
called mini-batches. The next epoch begins once the worker
has processed all of its mini-batches (i.e., all training data
assigned to the worker).

To simplify the cost model, we make the following assump-
tion on communication between workers and servers. First,
push requests from workers do not block gradient computation
and thus can be sent asynchronously with respect to the
workers’ local computation. On the other hand, a fresh pull of
the whole model must always occur before local computation
takes place. We assume such a model where pull requests
are issued synchronously and blocks local computation [24].
The synchrony of pull requests can be partially resolved by
decoupling the computation mechanism from communication
threads [20]; this leads to a different cost formulation that
can be understood as a variation of the one described in this
section.

We define the total time spent on local computation of
an epoch as computation cost, and the time spent on the
communication as communication cost (denoted by (A) and
(B) in Figure 2, respectively). Communication cost, to be
more specific, is the sum of the elapsed times between a
push request’s initiation and the response for a successive
pull request in each mini-batch. Using Ci

comp and Ci
comm to

denote the computation and communication cost of worker i
respectively, the epoch time of worker i becomes

Ci = Ci
comp + Ci

comm (2)

B. Cost Formulation

a) Computation cost.: This cost depends on the size
of the training dataset and the computing power of workers.
The entire dataset of size D is split and distributed to w
workers. Ci

comp depends on the size of the training dataset di
assigned to worker i and the computing power of the worker.
Depending on the time complexity f of the ML algorithm,
Ci

comp depends on f(di) since a worker-side computation
scans all of the allocated training data during an epoch. In
case an ML algorithm has linear time complexity (e.g., NMF,
MLR, LDA), Ci

comp is proportional to di. In a general system
consisting of heterogeneous containers (e.g., containers with
different numbers of cores), each worker i takes Ci

w.proc, the
time spent to perform computation on a single training data
instance, which varies across workers.



Ci
comp(di) = Ci

w.procdi (3)

Ci
w.proc depends on factors such as the implementation of

ML algorithm or the hardware of the worker container. In
Cruise, Ci

w.proc is measured by monitoring workers’ local
computation; we measure the elapsed time for workers to
compute gradients and divide it by the amount of the training
data instances. A larger dataset makes the computation cost
more expensive, but we can reduce the cost by introducing
more workers, which reduces the size of dataset di that each
worker processes in each epoch.

b) Communication cost.: We model communication cost
as the time a worker takes when communicating with the
server. The entire model of size M is split and distributed over
s servers. mj is the size of partial models assigned to server
j. We consider the following two cases to model Ci

comm.
1) Server network bandwidth is the bottleneck. The serving

latency of server j is the number of bytes sent to j
divided by the bandwidth bij between worker i and
server j: mjw

bij
where w is the number of workers.

With a mini-batch size of B, each worker i executes
ddi

B e mini-batches per epoch. Since the communication
cost is determined by the slowest server, Ci

comm =
ddi

B emax
j

(
mjw
bij

).

2) Worker network bandwidth is the bottleneck. In this case,
the worker’s network bandwidth is being fully utilized
to serve push and pull requests. The cost is formed as
the number of bytes sent by worker i divided by its
bandwidth: Ci

comm = ddi

B e
∑
j

mj

bij
.

Then, the communication cost Ci
comm is the maximum of

the above two terms.

Ci
comm =

⌈di
B

⌉
max

(
max

j
(
mjw

bij
),
∑
j

mj

bij

)
(4)

C. Optimization

a) Optimization problem.: In Figure 3, we formally
define our optimization problem. The problem formulated
for heterogeneous environments where some machines have
higher computing power or network bandwidth. In these
environments, the configuration space becomes larger, because
we also need to determine the data distribution as well as
deciding whether to run a worker or a server on a container.

The optimization goal is to find the parameters w, s,d,m
that minimize the cost function, where w and s denote the
assignment of machines to workers and servers, respectively,
and d and m denote the partitioning of the training dataset
and partial models, respectively.

Given N machines, we adjust the configurations to meet
the optimal balance between computation and communication
costs. For example, using more machines as workers certainly
brings down the computation cost by reducing the training data
size that each worker deals with. However, this leads to high
communication cost due to an increased number of push and

Given parameters
N : the total number of machines
D: the entire dataset size
M : the entire model size
B: the mini-batch size

Variables
w = {0, 1}N : wi = 1 if a worker runs on machine i
s = {0, 1}N : sj = 1 if a server runs on machine j
d = (d1, ..., dN ): training data partitioning for workers
m = (m1, ...,mN ): model partitioning for servers

Problem
Find w∗, s∗,d∗,m∗

= argmin
w,s,d,m

max
i

Ci(w, s,d,m)

= argmin
w,s,d,m

[
max

i

[
Ci

w.procdi+

ddi

B emax
(
max

j
(
mj‖w‖

bij
),
∑
j

mj

bij

)]]
Constraints
‖w‖+ ‖s‖ = N : workers and servers are assigned to

N machines disjointly∑
i

di = D : total number of training data samples∑
j

mj = M : total number of model partitions

Fig. 3: Optimization Problem

pull requests within an epoch and fewer containers available
for servers.

b) Solution.: Based on the problem definition in Fig-
ure 3, we cast the optimization problem as Mixed Integer
Programming (MIP) and solves the problem using a solver
library from Gurobi [9]. Since the quadratic terms affect the
performance significantly, we encode integer variables d and
m in binary representation, which allows the solver to multiply
variables faster. As a result, the MIP program consists of
O(N2) variables, O(N) quadratic constraints, and objective
terms. In case that we have homogeneous machines (i.e.,
all machines have the same computing power and network
bandwidth), the optimal solution distributes d evenly across
workers and m evenly across servers. Thus, we can derive
an analytical solution that runs in O(N). We present our
analytical solution below, but due to space constraints, we omit
its derivation.

w∗ = argmin
w

[ D

‖w‖T (‖w‖)
]
,

where T (‖w‖) = Cw.proc +
M

b
max(1,

‖w‖
N − ‖w‖ )/B.

s∗ : si = 1−wi
∗, d∗ : di =

D

‖w∗‖ ,

m∗ : mj =
M

N − ‖w∗‖ , b : machines’ bandwidth

(5)
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Fig. 4: Cruise Architecture.

IV. CRUISE

We extend an existing PS system to automatically con-
figure distributed ML execution. The extended system called
Cruise adds Optimizer and Elastic Runtime to the PS system,
as depicted in Figure 4. Optimizer estimates the optimal
configuration for a running ML job using runtime metrics.
Following the decision of Optimizer, Elastic Runtime applies
the necessary changes dynamically to the system without
stopping the running job.

A. Optimizer

Optimizer performs cost-based optimization by solving an
optimal configuration problem formulated in Section III. Mon-
itors collect runtime statistics related to the performance (e.g.,
the elapsed time for workers to compute gradients) and reports
the metrics to Master periodically. Optimizer then estimates
the performance in different system configurations based on
the runtime status. By doing so, our optimizer does not require
knowledge about the ML jobs (e.g., algorithms and hyper-
parameters). After finding the configuration that is expected
to be optimal, Optimizer maps the difference from the current
configuration and generates an optimization plan, consisting
of operations provided by Elastic Runtime. By executing the
operations in the plan, Cruise changes the system configuration
to the one with better performance. To achieve performance
benefit with optimization, we need to make decisions such as
when to calculate an optimization plan, whether to execute the
plan or not. We describe these policies below.

1) Metric Collection: Cruise collects runtime metrics to
use them as inputs to the Optimizer. Workers measure local
computation time and communication time and report to
Master at the end of every mini-batch. On the other hand,
Servers report the metrics to Master periodically. Since the
runtime metrics can fluctuate, we apply moving average to
reduce noise.

2) Optimization Trigger Policy: Based on the cost model
above, Cruise triggers optimization after collecting sufficient
metrics to substitute the unknown variables in the cost model.
We use metrics at the mini-batch granularity to be responsive

to the changes of the running job. Using metrics from a
configured number of subsequent mini-batches, we estimate
the cost of an epoch.

In order to avoid the system from continuously reconfigur-
ing back and forth around the estimated optimum, Optimizer
predicts the performance benefit of a new configuration and
skips that attempt if the gain is less than a certain threshold.
A threshold number from our experience -5%- is good enough
to prevent the system from “oscillating”, while allowing the
system to undergo moderately-sized optimizations.

When the amount of available resources (e.g., N ) increases,
Optimizer opportunistically tries to use the extra resources. If
more resources become available, Optimizer can adjust to find
an optimal configuration including the new resources. When
the amount of available resources decreases, it rebalances
execution accordingly.

3) Optimization Execution: Once the decision of a recon-
figuration is made with the computed system configuration
(w∗, s∗,d∗,m∗), the new configuration is contrasted with the
current configuration (w, s,d,m) to generate a reconfigura-
tion plan. All plans consist of a subset of four Elastic Runtime
operations, which we discuss in detail in Section IV-B. The
operation add is for newly joining containers, while the oper-
ation delete deletes containers that are no longer assigned
any data or partial model. The operation switch is to change
an existing server container to worker or from worker to server.
Training data and model partitioning, (d,m), can be modified
by migrating data between containers to preserve the state
of the running job, which we will further discuss in Section
IV-B. The move operation migrates data between containers,
starting with containers that have the largest training data or
model changes in a greedy fashion, to minimize the amount
of data to move and the number of movements.

Optimizer executes a plan by simply invoking Elastic
Runtime API that reconfigures system transparently without
stopping training. The simplest approach to execute the plan
would be to invoke the operations sequentially. However, to
make the reconfiguration agile, Optimizer generates the plan
as directed acyclic graphs of independent operations that can
be executed concurrently.

B. Elastic Runtime

Elastic Runtime is an execution environment that exposes
operations which Optimizer can call to dynamically reconfig-
ure the system. Elastic Runtime manages workers and servers
in the form of containers, each integrated with an Elastic
Executor. Elastic Executor runs application code on data
encapsulated by Elastic Store, a distributed key-value store
that constructs an effective management scheme. Elasticity
Controller manages the distributed Elastic Executors. It is
also the endpoint where Optimizer triggers reconfigurations
according to the generated optimization plan.

Elastic Runtime deals with two types of reconfigurations: re-
source reconfiguration and workload repartitioning. Resource
reconfiguration is achieved by Elastic Executor, a container-
ized and reconfigurable runtime which extends the existing



PS architecture’s Executor. Elasticity Controller coordinates
resource reconfiguration by easily adding and removing Elastic
Executors. Workload repartitioning is conducted efficiently
with Elastic Executor’s internal component, Elastic Store.
An Elastic Store encapsulates data in an in-memory storage
with a management scheme that provides flexibility in the
accommodated data type (e.g., training data or model data).

Transparency must be maintained in the course of a recon-
figuration. Reconfiguration must occur with minimal effects
to the running job by maintaining the application’s access to
data without any loss or significant overhead. Elastic Executor
performs several additional tasks required for a transparent
reconfiguration, such as adaptive data ownership management
or redirection of requests to the new owner of data.

We explain the details on resource reconfiguration in Section
IV-B1 and workload repartitioning in Section IV-B2 while
maintaining transparency in Section IV-B3.

1) Resource Reconfiguration: Containers can be added or
deleted when Optimizer determines so with operations add
and delete for which the simple signatures are provided
in Figure 5. When add is executed, Elastic Runtime simply
launches an Elastic Executor on a new container. In the case
of a container delete, Elastic Executor stops the app code
and itself to release the container.

When deleting an executor, Elastic Runtime performs ad-
ditional wrap up, corresponding to its role (e.g., worker or
server). Before a server-side Elastic Executor shuts down, it
redirects all remaining pull requests from workers to the new
owning Elastic Executors to prevent workers from waiting long
for a response. For worker-side, it waits until ongoing mini-
batch to be finished and push requests are flushed to servers.

Elastic Runtime also provides switch operation that
changes Elastic Executor to another type (e.g., from server
to worker or from worker to server). This operation also
involves the setup and cleanup procedure involved in add and
delete. However, the two procedures occur in parallel in the
existing container and there is no container setup or cleanup
involved. This is especially beneficial in an environment with
constrained resources as add must wait for a container to
become free after a delete completes.

2) Workload Repartitioning: Workload repartitioning in-
cludes changing each container’s ownership of training data/-
partial models and migrating the data accordingly. A re-
source reconfiguration must occur in conjunction with work-
load repartitioning. When a container is added/deleted, the
workload for each container must be readjusted across the
new set of containers now running in the system. Workload
repartitioning may occur on its own in the case of an imbalance
in workload between containers.

Any runtime state of the job such as the model data across
servers must be preserved, not to lose the job’s progress. Thus,
the states must be migrated from one container to another. In
addition to such mutable data, training data across workers
which remains unchanged can enjoy the benefit of migration to
reduce the overhead of reloading the entire dataset in workload

Data access interface Description
put(Key, Value) Puts (Key,Value) to Elas-

tic Store
get(Key) Gets the value associated

with Key
update(Key, Func,
Delta)

Updates the value for
Key with the result of
Func(Value, Delta)

Reconfiguration interface Description
add(ResourceConf,
RuntimeConf)

Adds new containers and
starts runtime on them

delete(Containers) Deletes existing containers
switch(Container,
RuntimeConf)

Switches a container to run
a specified runtime

move(Blocks,
SrcContainer,
DstContainer)

Moves blocks from one
container to another

Fig. 5: Elastic Runtime Interfaces.

repartitioning. Both mutable and immutable data can be stored
in Elastic Stores on which workload repartitioning occurs.

Data Storage and Ownership Management: Data man-
agement in Elastic Runtime involves a collection of Elastic
Stores where the actual key-value tuples are stored. The
actual ownership of each data instance is maintained by
the respective Elastic Store, but Elasticity Controller also
maintains a global ownership view to orchestrate migration
between Elastic Stores. Ownership tables are updated during
the migration process, which we will discuss the details below
in this section.

Elastic Stores are composed of blocks containing data and
a block is owned by exactly one Elastic Store. The entire key-
space of data is partitioned and each block contains data for a
range in the key-space. For an even partitioning of keys over
blocks, each block stores data for a hashed key range. Clients
of Elastic Stores - worker and server code in our paper - use
a key which is mapped to a value to access each key-value
tuple. For each client access, the only Elastic Store owning
the block where the key-value tuple is stored processes the
request according to the ownership table.

Data Access: Elastic Runtime allows values to be stored
to and retrieved from Elastic Stores through simple opera-
tions, similar to what can be done in distributed hash tables
(DHTs) [8]. The difference of Elastic Stores over such key-
value stores is that Elastic Runtime exposes options to migrate
data. Elastic Store provides simple and standard operations
for clients to access and update each data instance with a
key as shown in Figure 5. Elastic Runtime guarantees that
operations are served exactly once by maintaining a single
owner of the block containing the key-value tuple on which
the operation is conducted across all Elastic Stores. When an
operation is requested to the Elastic Store that does not own
the block, the request is processed by remotely accessing the
owner according to the ownership table in each Elastic Store.

In addition to the put/get operations, we provide
update operation, which atomically executes Func, a user-
defined function that should be commutative and accumulative



to guarantee atomic incremental updates.
In Cruise, when starting a job, a worker Elastic Executor

loads its assigned set of training data using put into its local
Elastic Store. While running the job, Elastic Executor fetches
the data to process for each mini-batch from the local Elastic
Store using get. Servers, however, must use update when
processing a push request to guarantee atomicity. To process
a pull request, servers simply get model data from the local
Elastic Store.

Data Migration: move operation changes ownership and
migrates data between Elastic Stores. This should be done
carefully to prevent loss or duplicated processing of an oper-
ation, while changing block owner. It is also the most critical
factor that determines reconfiguration performance and thus
Elastic Runtime executes multiple moves concurrently, each
move parallelized in block units.

We implement the following protocol in Elastic Runtime
to provide an efficient migration process. Elasticity Controller
initiates a migration for a set of blocks by sending a message
to the source container. The source container migrates blocks
concurrently to the destination container and reports Elasticity
Controller about the completion of the migration for every
block, upon each ACK message from the destination container.
Finally, Elasticity Controller broadcasts ownership change
of the block to all other containers. Specifically, the block
migration is done in two distinct steps: ownership handover
and actual data transfer. In the source container, when starting
migration for a block it hands over ownership first, so access
operations for the block in this container are redirected to
the destination container. In the destination container, when it
takes an ownership it starts queueing access operations for the
block and starts processing them after receiving actual block
data.

The key point in the migration process is that block own-
ership is transferred atomically such that there is always a
single owner for a block. Another key point is that even if
multiple blocks are requested for migration, client access to a
key is blocked only during the actual migration of the block
containing the key.

3) Transparency during Reconfiguration: Dynamic recon-
figuration must occur without any extra work for Elastic
Runtime’s clients, but also must refrain from any performance
degradation. Such transparent reconfigurations include the
following requirements. First, client access APIs must be
supported during reconfiguration, maintaining read-my-write
consistency. Second, in effort to serve client access, over-
heads such as increased number of remote data accesses are
inevitable due to resource reconfigurations. Such inefficiency
must be minimized. Finally, the reconfiguration must guaran-
tee that the accuracy of the model being learned is unaffected.
Elastic Runtime reinforces the key requirements in achieving
transparent reconfigurations with the following features.

Data accessibility: Data must be accessible any time during
and after data migration for client access. Elastic Store enables
remote access with the ownership table maintained atomically
during the migration process.

Data locality: Though data is remotely accessible through
local Elastic Stores, remote access is expensive. Elastic Ex-
ecutor aligns its workload partitioning with the actual data
in its Elastic Store to maximize locality with the migration
protocol. During a migration, when worker code running on
Elastic Executor asks for a batch of data to process, a local
set of data is guaranteed to be returned by keeping track of
the keys for local training data.

Dynamic ownership table: In Cruise, workers send re-
quests to specific servers containing the key of the partial
model according to each worker’s local ownership table. When
the ownership update is immediately broadcasted to all worker
Elastic Executors during migration, workers can immediately
request to the new owner server. For requests that arrive at the
old owner server prior to the worker-side ownership update,
Elastic Executor of the old owner server refers to its ownership
table and redirects the requests to the new owning server.

V. EVALUATION

We implemented Cruise with around 20K lines of code in
Java 1.8. We built Cruise on Apache REEF [22], a library for
application development on cluster resource managers such as
Apache YARN and Apache Mesos. REEF provides a control
plane for data processing frameworks including the negotiation
with the cluster resource manager and the control channel
between containers.

We evaluate Cruise with three machine learning applica-
tions. Our evaluation mainly consists of the following four
sections: (1) We compare the performance of our expected
optimal configuration to that of the actual optimal configura-
tion (Section V-B). (2) We demonstrate that Cruise reduces
epoch time, speeding up training (Section V-C). (3) We show
how Cruise optimizes the system configuration when resource
availability changes (Section V-D) and in heterogeneous en-
vironments (Section V-E). (4) We investigate the overhead
incurred while optimizing the system. (Section V-F).

A. Experimental Setup

Default cluster setup: We run experiments on AWS EC2
instances with YARN running on Ubuntu 14.04. Unless explic-
itly mentioned, we use 32 r4.xlarge instances, each of which
has 4 virtual cores, 30.5GB RAM, and 1.25 Gbps network
connection 3. We launch one Elastic Executor per machine to
run a worker or a server.

Workloads: We choose three popular ML workloads in
different categories: recommendation, classification, and topic
modeling as summarized in Table II.

Non-negative Matrix Factorization (NMF) is commonly
used in recommendation systems. The main idea is to find
undetermined entries in a given matrix. NMF factorizes a
matrix M (m×n) into factor matrices L (m×r) and R (r×n),
where M ≈ LR. We implement NMF via the stochastic
gradient descent (SGD) algorithm, similar to the one described
in [21]. Matrix R is partitioned across servers, while L is

3AWS specifies that the r4.xlarge type provides up to 10 Gbps network
bandwidth. We measured the actual bandwidth with iperf tool.



Application Dataset Hyper-parameter Num. of model parameters
NMF 16x Netflix (1.9M users, 71K movies) 1K rank 1K * 71K
MLR Synthetic sparse (100K samples, 160K features) 4K classes 4K * 160K
LDA PubMed (8.2M documents, 141K words) 400 topics 400 * 141K

TABLE II: Description of datasets used in evaluation. The dataset is partitioned to workers. Num. of model parameters refers to the total
number of parameters in model, which is partitioned to servers.

App. Initial Cruise’s Optimal Rel.
(W, S) Choice (W, S) Perf

NMF (27, 5) (24, 8) (23, 9) 98.8%
(18, 14) (22, 10) 93.9%

MLR (18, 14) (26, 6) (27, 5) 97.8%(23, 9)

LDA (27, 5) (18, 14) (18, 14) 100%(23, 9)

TABLE III: Comparison between the configurations found by
Cruise’s Optimizer and the ground truth optimum found by the grid
search for the cases in Table I. Relative performance is the epoch time
in the optimal (W, S), divided by the epoch time in each configuration.

partitioned across workers, where the smallest unit of training
data is a single user’s rating matrix (1×n). NMF experiments
use the 16x Netflix dataset whose size is around 40 times
greater than the one in the evaluation of [21]. We set mini-
batch size to be 10K.

Multinomial Logistic Regression (MLR) is an algorithm for
classification. Each d-dimensional observation x ∈ Rd belongs
to one of the M classes, with the model parameter size of
M×d. We also implement MLR using SGD. Our experiments
use a synthetic dataset generated by a public script from the
Petuum framework [3]. The dataset is around 46 times greater
than the one used in the evaluation of [21]. We process 1K
observations in a mini-batch for our experiments.

LDA is an algorithm to discover hidden properties (topic)
from a group of documents. Each document consists of a bag
of words, where LDA associates latent topic assignments. Our
LDA implementation uses an efficient variant of the collapsed
Gibbs sampling algorithm [25], which is widely used [17],
[21]. We run LDA experiments using the PubMed dataset.
Our dataset is 15 times larger than one of the datasets used
in [21]. We process 1K documents in a mini-batch.

Optimizer setup: We observe that the performance of the
initial mini-batches fluctuate until the system stabilizes. To
prevent Optimizer from computing the cost inaccurately, we
configure it to wait until all workers finish a set of mini-
batches. In addition, Optimizer does not trigger reconfiguration
if the estimated performance gain (in terms of the cost) is
below 5% in order to avoid oscillation. As mentioned in
Section III-C, we use the O(N) analytical solver for the
homogeneous environment and use the ILP solver for the
heterogeneous environment.

B. Finding Baselines with Grid Search

Before evaluating Cruise’s optimization, we find the base-
line for all experiments. We simply perform a grid search that
runs all possible configurations (w, s), to find the ground truth
optimal configurations for the various experiments. Since such
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Fig. 6: Epoch time of an NMF job starting at 3 different configu-
rations. The black line shows the global optimum and the blue and
red lines show optimizations from the other initial configurations.
The dotted lines show the performance without optimization to the
corresponding colors. The vertical lines represent the reconfiguration
of each cases.

a grid search including (d,m) is quite complicated, we use
heuristics to eliminate these variables. In the homogeneous
environment, an even partitioning is intuitively optimal. The
result of this grid search yields the ‘Optimal (W, S)’ column
in Table III. In the heterogeneous environment, we distribute
blocks proportional to each machine’s power based on met-
rics including worker’s local computation time and server’s
network bandwidth.

C. Optimization in the Homogeneous Environment

After performing the grid search, we run NMF, MLR, and
LDA each starting with its optimal configuration and the
optimal configurations for the other two applications (as the
two configurations are reasonable starting points for users
running the applications in the same cluster).

Cruise finds configurations close to the ground-truth opti-
mum found in Section V-B for the various cases mentioned
in Section II-B in the homogeneous environment. Table III
shows the comparisons: In NMF and MLR, Cruise chooses
near-optimal configurations where the number of machines for
each role differs by one node compared to the optimum found
by grid search. The resulting performance in terms of epoch
time is slightly inferior to the optimum but the difference is
smaller than 6.1%. Cruise finds the optimal configuration in
LDA with the same performance as the optimum.

Figure 6 depicts how Cruise decreases the epoch times of
NMF. Starting at (W:27, S:5), Cruise moves to (W:24, S:8),
with the relative performance of 1.1% slower than the optimum
at (W:23, S:9). With the initial (W:18, S:14) configuration,
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Cruise reconfigures to (W:22, S:10), with 6.5% slower perfor-
mance than the optimum. We observe that Cruise optimizes the
misconfigured NMF jobs with significant drops in epoch time
of 35.8% and 22.3% in each case, soon stabilizing to that of
the new configuration. Our experiments with other applications
in the same environment also decrease epoch time by 55.3%
and 8.7% in MLR, and 37.5% and 17.4% in LDA.

D. Utilizing Opportunistic Resources

The previous experiments show how Cruise optimizes sys-
tem configuration when available resources do not change.
Cruise’s capability to optimize system configuration during
runtime, however, is more powerful when available resources
change over time. Cruise keeps track of available resources in
the cluster and updates the system configuration if there are
changes in resource availability. In this experiment, we assume
that the cluster has 16 extra containers that are available
opportunistically; starting with 16 containers, we add/reclaim
16 containers at every 20 minutes. We show how Cruise’s
runtime optimization utilizes opportunistic resources by com-
paring cases with and without optimization. In both cases, we
run ML jobs with the initial configuration of (W:14, S:2), the
actual optimum found for 16 containers from experiments.

Figure 7 demonstrates that the average epoch time approx-
imately halves when 16 more resources are available. At the
20th minute, the configuration moves toward (W:25, S:7),
taking advantage of the added resources. The reconfiguration
takes around 87.3 seconds, most of the overhead caused by
the data migration of the half of total training data and model
data, to the new containers. At the 40th minute, Cruise returns
to the previous configuration (W:12, S:4) with 98.4 seconds of
reconfiguration overhead for data migration and state cleanup.
The additional resources become available again at the 60th
minute and Cruise goes to (W:25, S:7), same as the previous
optimization at the [20, 40] minutes time interval.
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Fig. 8: Epoch time of NMF at different starting points in the
heterogeneous environment. 4 machines are r4.4xlarge (“Faster”) and
the rest 28 are r4.xlarge (“Slower”) EC2 instances. Notations of
configuration in legend is defined in Section V-E.

E. Optimization in the Heterogeneous Environment

There are two different aspects to the setup in the het-
erogeneous environment from the homogeneous environment.
Workload should be partitioned differently corresponding to
machine types and each type of machine should be assigned a
more proper role (e.g., worker or server). The heterogeneous
environment uses two types of machines: in addition to the 28
instances of r4.xlarge, we use 4 faster machines (r4.4xlarge)
that have 16 virtual cores, 122 GB RAM, and 5.00 Gbps
network connection. 4 In our experiments, we allocate the
faster instances evenly to begin with, 2 for workers and 2
for servers. For block partitioning, we start all experiments
with even partitioning denoted as ‘E’, whereas the optimal
configuration distributes blocks proportially to machine’s ca-
pability, which is denoted as ‘P’. For example, we denote a
configuration of 20 workers with 3 strong machines and 12
servers with 1 strong machine with even block partitioning as
(W:17+3, S:11+1)|E. We run the same three applications with
the same starting points as the homogeneous environment, and
we show how differently Cruise optimizes the configuration in
the heterogeneous environment.

Figure 8 shows the results of running NMF starting at
(W:25+2, S:3+2)|E. Cruise reconfigures the job to (W:20+4,
S:8+0)|P close to the ground truth optimum in the heteroge-
neous environment (W:19+4, S:9+0)|P. Data is repartitioned so
that the faster instances have about 2 times more blocks than
the slower instances, reflecting the heterogeneity. Epoch time
decreases by 35.2% (from 162 s to 105 s). Our experiments
with other applications in the same environment also reduce
the epoch times by 58.3% in MLR starting at (W:16+2,
S:12+2)|E and 41.3% in LDA starting at (W:25+2, S:3+2)|E.

To focus on the benefit of role reassignment and workload
repartitioning, we run the job again at (W:21+2, S:7+2)|E,
without any optimization (the green line). Here, we observe

4AWS specifies that the r4.4xlarge type provides up to 10 Gbps network
bandwidth. We measured the actual bandwidth with iperf tool.



that this static configuration is 12.4% slower (118 s vs. 105 s)
than the epoch time for the configuration chosen by Cruise.

F. Reconfiguration Speed

The optimization procedure is composed of cost calculation
and plan execution. Cost calculation takes 30 ms for the
homogeneous environment and 37.4 s for the heterogeneous
environment on average. More time is spent on plan execution,
especially for move: the overhead includes (de)serialization
time, network transfer time, and the time to acquire the lock
on the block to migrate. The data size also affects the time
to execute the operation. The overhead of add and delete
is relatively small, which takes around 2~3 s for resource
initialization and cleanup. The time for switch is more
negligible since there is no cost for resource setup.

Here we break down the plan execution of an NMF ex-
periment that starts from (W:18, S:14) in Section V-C. The
plan changes the configuration to (W:22, S:10), composed
of 4 switches from server to worker and 30 moves that
repartition data and model blocks. It takes 31.3 s in total for
our plan executor to execute these operations in parallel. Most
of this time is taken during worker-side moves, due to the
huge size of data being migrated. Input data is divided into
200 worker blocks. A worker block is 100 MB, each of which
contains 10K items. 18 moves migrate 36 data blocks in total
between worker executors. The longest move takes 25.8 s,
migrating 4 blocks at once, serving as the bottleneck to this
plan execution time. On the other hand, model data is divided
into 128 server blocks. Block size is 2 MB and each contains
only 280 items. The plan migrates 36 model blocks with 12
moves. Server-side moves take at most 1.4s.

VI. RELATED WORK

An early version of our work appeared in a workshop
paper that sketched a high-level approach to optimizing PS
system configurations [6]. This paper presents the complete
problem formulation, design, implementation, and evaluation
of the system. Cruise differs from other systems in that it
automatically tunes PS system configuration by solving the
configuration optimization problem with runtime PS system
metrics and applying the solution to the running system
efficiently. Below we summarize the works that are most
relevant to Cruise.

TuPAQ [18] is a system for identifying ML model configu-
rations (e.g., support vector machine vs. logistic regression,
hyper-parameter values) that lead to high performance in
terms of model accuracy, built on Apache Spark [14], [26].
TuPAQ casts ML model identification as a query planning
problem and applies a bandit allocation strategy as well as
various optimizations such as batching, optimal cluster sizing,
and advanced hyper-parameter tuning techniques to solve the
problem efficiently. This study focuses on supervised ML
models. In contrast, Cruise addresses the problem of tuning
system configuration in the PS architecture.

SystemML [13] is a hybrid runtime system that uses in-
memory Control Program (CP) and MapReduce (MR) jobs to

run declarative ML programs. There also is another version
of the work [2] that applied the same concept to Spark [26],
regarding Spark Driver as the CP and Executors as the worker
jobs. The system focuses on optimizing memory configura-
tions during runtime when there is a change in available re-
sources. On the other hand, Cruise optimizes the running time
of ML applications on the PS architecture by automatically
tuning system configuration.

Yan et al. [24] propose a cost formulization that predicts the
computation and communication overheads of Deep Neural
Network (DNN) applications by modeling the internals of
the algorithm. In contrast, Cruise measures computation and
communication time at runtime instead of modeling the inter-
nals of the algorithm, uses the runtime measurement for cost-
based optimization, and applies the estimated optimal system
configuration by reconfiguring a running job, which allows us
to take advantage of resource elasticity.

Starfish [11], built on Apache Hadoop [19], performs opti-
mization on MapReduce. It gathers job profiles from runtime
statistics via dynamic instrumentation for job-level tuning,
guaranteeing shorter execution times. Many of Starfish’s de-
sign considerations come from the MapReduce programming
model, while Cruise targets ML applications running on the
PS architecture.

Recent works like Bösen [21], Ako [20], and MALT [15] do
not decide on the number of workers and servers since each
node runs both worker and server. They have different styles
of model synchronization. Bösen is a PS implementation,
which requires all-to-all communication. Ako is a peer-to-
peer DNN training system. Ako exchanges partial gradients
across multiple rounds to adjust the hardware and statistical
efficiency. Similarly, MALT is a peer-to-peer ML training
system where each node exchanges parameter updates with
log n nodes deterministically. In contrast, Cruise employs cost-
based optimization, allows flexible worker and server allo-
cation, handles elastically changing resources, and considers
heterogeneous environments.

VII. CONCLUSION

In this paper, we present a methodology to automatically
tune system configuration of PS-based ML systems. We build
Cruise by extending an existing PS-based system to optimize
system configuration based on the methodology. Cruise Op-
timizer estimates the optimal system configuration - resource
configuration and workload partitioning - using a cost-based
model with runtime metrics. Elastic Runtime enables efficient
runtime reconfigurations according to the computed optimal
configuration. Our evaluation shows that Cruise frees ML ap-
plication developers of choosing right system configuration by
tuning system configuration automatically. Cruise is publicly
available at https://github.com/snuspl/cruise.
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