
1

Towards Accelerating Generic Machine Learning

Prediction Pipelines

Alberto Scolari

⇤
,Yunseong Lee

†
, Markus Weimer

‡
, Matteo Interlandi

‡

⇤
Politecnico di Milano

alberto.scolari@polimi.it

†
Seoul National University

yunseong@snu.ac.kr,

‡
Microsoft Corporation

{mweimer,mainterl}@microsoft.com,

Abstract—Machine Learning models are often composed by sequences of transformations. While this design makes easy to

decompose and accelerate single model components at training time, predictions requires low latency and high performance

predictability whereby end-to-end runtime optimizations and acceleration is needed to meet such goals. This paper shed some light on

the problem by using a production-like model, and showing how by redesigning model pipelines for efficient execution over CPUs and

FPGAs performance improvements of several folds can be achieved.

Index Terms—Machine Learning, Model Scoring, Prediction Pipelines, FPGA.

F

1 INTRODUCTION

MACHINE Learning frameworks, such as Google Ten-
sorFlow [3], Scikit-learn [4], H2O [5] or Microsoft’s

Internal ML toolkit (IMLT), often structure the sequence
of operations for training into pipelines of transformations,
which typically operate on large, high-dimensional input
data. Trained models are then served for prediction whereby
a derived pipeline of data transformations is used to featur-
ize raw input data points before model scoring.

While prior research focused on accelerating specific ML
kernels [1], [2] or predictions for complex neural networks
models [6], to our knowledge no research exists on the
integration of accelerators within general ML prediction
pipelines. Indeed, most of the input pre-processing, which
is often a computationally demanding phase, still occurs on
standard CPUs. However, some of these initial steps (for ex-
ample string tokenization and hashing) have characteristics
that make them amenable for acceleration.

Training and prediction pipelines have generally dif-
ferent system characteristics, where the latter are surfaced
for direct users access and therefore require low latency,
high throughput and high predictability. Accelerating pre-
dictions with specialized hardware such as FPGAs often
requires redesigning these pipelines to efficiently utilize the
accelerator’s capabilities. This work sheds some light on
the problem, showing how some common operations of
prediction pipelines can benefit from hardware acceleration
and from redesign.

Like increasingly many of the off-the-shelf ML libraries,
the internal ML toolkit we used in this work expresses ML
pipelines as a Direct Acyclic Graph (DAG) of transformations,
which are mostly implemented in C#. Figure 1 shows an
example of a model pipeline used for sentiment analysis
(a more detailed description of each single transformation
composing the pipeline will be introduced in Section 2).
IMLT employs a pull-based execution model that lazily
materializes input vectors, and tries to reuse existing data

Work done while Alberto Scolari and Yunseong Lee were at Microsoft.

Input OutputTokenizer

Word 
Ngram

Char
Ngram

Concat Linear
Regression

Fig. 1. A model pipeline for sentiment analysis.

buffers for intermediate transformations. This largely de-
creases the memory footprint and the pressure on garbage
collection, and avoids relying on external dependencies (like
NumPY [7] for Scikit) for efficient memory management.
Conversely, this design forces memory allocation along the
data path, therefore making model scoring time hard to
predict. This in turn results in difficulties in providing
meaningful SLAs by ML-as-a-service providers.

Starting from models authored using IMLT, this work
decouples the high-level user-facing API of the tool from
the physical (execution) plane, with the goal of keeping data
materialization minimal. This decoupling allows us to (1)
optimize how transformations are executed, for instance by
compiling several transformations together into one efficient
execution unit; and (2) distribute different parts of the
computation to heterogeneous devices such as CPUs and
FPGAs (and, in the future, possibly to different machines)
while optimizing the execution for each target device.

Using a production-like model we show that, compared
to IMLT, our design improves the latency by several orders
of magnitude and that generic ML prediction pipelines can
benefit from acceleration via FPGAs. Interestingly, we find
that a tuned CPU implementation outperformed the FPGA
implementation; to fully exploit hardware acceleration, a
redesign of prediction pipelines is not enough inasmuch as
more hardware-friendly operations are not used at training.



2

Fig. 2. Execution breakdown of the example model

2 THE CASE FOR ACCELERATING GENERIC PRE-
DICTION PIPELINES

Nowadays, several “intelligent” services such as Microsoft
Cortana speech recognition, Netflix movie recommender or
Gmail spam detector depend on ML model scoring capabil-
ities, and are currently experiencing a growing demand that
in turn fosters the research on their acceleration.

While efforts exist that try to accelerate specific types of
models (e.g., Brainwave for deep neural networks) many
models we actually see in production are often generic
and composed of several (tens of) different transformations.
Many workloads run in a prediction-serving, cloud-like
setting, where prediction models coming from data science
experts are operationalized. While data scientists prefer to
use high-level declarative tools such as IMLT for better
productivity, operationalized models require low latency,
high throughput, and highly predictable performance. By
separating the platform where models are authored (and
trained) from the one where models are operationalized, we
can make simplifying assumptions on the latter:

• models are pre-trained and do not change during
execution; 1

• models from the same user likely share several
transformations, or, in case such transformations are
stateful (and immutable), they likely share part of
the state; in some cases (for example a tokenization
process on a common English vocabulary) the state
sharing may hold even beyond single users

These assumptions together motivate the research in ac-
celerating large portions of generic ML training pipelines:
indeed, computationally-heavy transformations with im-
mutable state can be thoroughly optimized and offloaded
to dedicated hardware with only a one-time, setup cost
for setting the state. Once the most common sequences
of transformations are identified in a workload, multiple
prediction pipelines can benefit from their acceleration.

To make our claims more concrete, throughout this paper
we will use a sentiment analysis prediction model as a
motivating example. This model starts from raw sentences
and predicts a classification label for each sentence. The
model approximately works as follow: the input sentences
(strings) are tokenized into words and chars after an initial
normalization step. Then two feature vectors are generated
as bag-of-words composed by the n-ngrams extracted from
word and chars, respectively. The two vectors are then
normalized and concatenated into a unique feature vector
which is then run through a simple linear regression model.
Figure 1 contains the DAG of transformations composing
the sentiment analysis example. Figure 2 shows the ex-
ecution breakdown of this model when scored in IMLT,

1. We ignore the online learning case here for ease of presentation.

where the prediction (the LinReg transformation) takes a
very small amount of time compared to other components
(0.3% of the execution time). Instead, the n-gram transfor-
mations take up almost 60% of the execution time, while
another 33% is spent in concatenating the feature vectors,
which consists in allocating memory and copying data. In
summary, most of the execution time is lost in preparing
the data for scoring, not in computing the prediction. In our
workloads, we observed that this situation is common to
many models, because many tasks employ simple predic-
tion models like linear regression functions, both because of
their prediction latency, and because of their simplicity and
understandability. In these scenarios, we can conclude that
the acceleration of an ML pipeline cannot focus solely on
specific transformations, as in the case of neural networks
where the bulk of computation is spent in scoring, but needs
a more systematic approach.

3 CONSIDERATIONS AND SYSTEM IMPLEMENTA-
TION
Following the observations of Section 2, we argue that
acceleration of generic ML prediction pipelines is possi-
ble if we optimize models end-to-end instead of single
transformations, i.e., while data scientist focus on high-
level “logical” transformations, the operationalization of the
model for scoring should focus on execution units making
optimal decisions on how data is processed through model
pipelines. We call such execution units stages, borrowing this
term from the database and system communities. Here, a
stage is a sequence of one or more transformations that are
executed together on a device (either a CPU or an FPGA,
in this work), and represents the “atomic” unit of the com-
putation. No data movement from the computing device to
another occurs within a stage, while communication may
occur between two stages running on different devices, like
the PCIe communication when offloading to FPGA. Within
a stage, multiple optimizations are possible, from high-
level optimizations (like fusing operators together through
data pipelining) to low-level, hardware-related ones (like
vectorization for CPUs or task pipelining for FPGAs). The
notion of stage is particularly important with regards to
FPGA acceleration because it allows accounting for the
cost of communication: grouping multiple transformations
into a single stage allows trading off the data movement
overhead, and makes it possible to devise models of the
communication and the execution to be used for scheduling.

In the example of Figure 2 we distinguish three stages:

• In the first stage the input is tokenized and the
number of occurrence of the char n-grams found in
the sentence is returned as a sparse vector together
with its cartesian norm.

• In the second stage, another feature vector is com-
puted out of the bag-of-words representation of the
input tokens (coming from the previous stage).

• In the third stage, weighting and normalization
occur, and finally the exponentiation is computed;
within this stage, it is possible to vectorize the
weighting operation and to change the representa-
tion of the vector (from sparse to dense) if this makes
the computation more efficient



3

CN

T C

WN

LinReg

Stage 1 Stage 3

Stage 2

Fig. 3. Stages for the sentiment analysis example pipeline

We optimized these three stages both for CPU execution and
for FPGA execution, and give more details on the specific
implementations in sec. 3.1 and sec. 3.2, respectively. The
model DAG with related stage subdivision is pictorially
described in Figure 3.

3.1 CPU Implementation
As a framework written in C# language, IMLT heavily
depends on reflection, virtual buffers, and virtual function
calls. Users do not need to worry about data types, memory
layout, and how the virtual functions are implemented. In
this way, users can build their custom pipelines easily, how-
ever, we observed that IMLT has to sacrifice performance at
scoring time in order to provide such level of generality.

We ran an experiment where the model described in the
previous section is first loaded in memory and then scored
multiple times. Even when using the same input record, we
noticed that large variability in the execution time exists:
the first scoring is regularly around 540 times slower than
the remaining executions. We refer to each case as cold
and hot, respectively. In both situations, we identified that
major bottlenecks were created by (1) the just-in-time (JIT)
compiler, (2) the module inferring data type with reflection,
(3) virtual function calls; and (4) allocation of memory
buffers on demand. To address the first two problem, in the
CPU implementation we removed this overhead by rewrit-
ing the pipeline code: since the model pipelines are pre-
trained, all the type information and data path information
can be resolved at compile time. This removes the overhead
of dynamic type binding and code compilation. Moreover,
we pre-compiled the pipeline into bytecode which reduces
the cost of reflection and virtual function call. Furthermore,
we created a native image of the pre-compiled code and
its dependencies. In this way we avoided all unpredictable
performance due to just-in-time compilation.

Finally, we can benefit from information extracted at
training time to improve memory management at scoring
time, i.e., since the data types in the pipelines are fixed after
training, we can estimate the amount of required memory
before execution, and create pools of memory buffer which
are then accessed when stages are executed.

3.2 FPGA Implementation
In the FPGA implementation, the first stage can greatly
benefit from the hardware characteristics. Indeed, the whole
stage can be easily parallelized and its sub-phases can be
pipelined with each other. In particular, the text normal-
ization can be done immediately before the tokenization in

a pipelined fashion, and the tokenization of a long string
can be split into multiple parallel tokenizations by allow-
ing some overlap of input characters between consecutive
tokenizer units. A tokenizer unit should recognize common
punctuation marks, the beginning and end of words and
emit a corresponding Murmur hash [8] for each token. To
achieve an efficient implementation, we devised a Finite
State Machine (FSM) recognizer automaton that is able to
take in input one character per clock cycle, recognize the
tokens observed and record the corresponding hashes. The
design of the tokenizer allows trading between performance
and area: if area is limited, a tokenizer can run over more
characters and record more tokens at the expense of a higher
latency; otherwise, it is possible to limit this latency by using
many tokenizers in parallel, with at most one tokenizer per
character that can emit at most one hash.

Once the hashes are available (output of stage 1), stage
2 associates each word to a unique number for n-gram
extraction, with a dictionary lookup that goes to the off-
chip memory. Although this operation is surely expensive,
we argue it is no more expensive than on CPU because of
the similar hardware for off-chip RAM memory access, and
because of the low locality of this transformation that makes
caches ineffective. To make this operation as efficient as
possible, we increased the number of buckets of the model
dictionary in order to limit collisions (which are handled by
serializing the data in the buffer) to a pre-defined number,
so that the FPGA logic can fetch a fixed amount of data in a
burst fashion for every lookup. In pipelines with dictionary
lookup, we insert each n-gram identifier in an array, with a
parallel lookup to avoid double insertions and increment the
counts. This whole phase could be simplified and sped up
by using the hash itself as the n-gram identifier and allowing
collisions, but this requires retraining the model; as from the
assumptions in Section 2, we assume the model is fixed and
we have no control on it, and leave this work for the future.

Regarding the FPGA implementation of the third stage,
for the weights lookup we used the n-gram identifier to
access the value in the off-chip memory, again at the cost
of an off-chip memory access. This is due to the size of the
weights vector, which cannot stay in the on-chip memory.
As before, the sparsity of this computation requires memory
accesses on both the FPGA and the CPU.

4 EXPERIMENTAL EVALUATION

In this Section we experimentally evaluate the performance
gain of our implementations described in Section 3 wrt base-
line IMLT. For the CPU implementation, the experiments
were run over a Windows Pro machine with an Intel Xeon
CPU E5-2620 with 2 processors at 2.10GHz, and 32 GB of
RAM. Regarding the FPGA implementation, we used the
SDAccel prototyping platform by Xilinx, which abstracts the
communication, and we used Xilinx’ High Level Synthesis
(HLS) tools to generate the accelerator logic. As a device,
we used an ADM-PCIE-KU3 board by Alpha Data, with
2 DDR3 memory channels and PCIe x8 connection to the
CPU. While the area did not cause major limitations to the
design, the number of RAM channels limited the number
of parallel dictionary and weights lookups, despite still



4

Fig. 4. Performance improvement achieved by CPU and FPGA imple-

mentations

providing comparable bandwidth compared to a CPU for
reading the input sentence and for the dictionary bursts.

Figure 4 shows the results of our experiments over the
sentiment analysis model of Section 2 in terms of per-
formance, reporting the scoring latency of IMLT, of the
CPU implementation and of the FPGA implementation. We
report the speedup over the prediction latency on both
the hot and cold scenarios for the CPU implementation.
For the cold scenario we scored one single record, while
for the hot scenario we first use one record to worm up
the model and then we average the scoring latency of a
batch of 9 records. We repeated the experiment 5 times and
we report the average speedup. All the results have been
normalized with respect to the IMLT prediction latency in
the hot scenario, which is our baseline. Figure 4 shows that
our CPU implementation achieves 3.3 times improvement
over IMLT in the hot scenario, while in the cold scenario it
is still 20 times slower, but with an improvement of 87.5x
over IMLT cold. These improvements are due to the up-
front memory allocation and to the more optimized code,
which avoids memory copy and data conversions among
transformations within the same stage. Instead, the FPGA
implementation (which does not suffer from warm-up de-
lays and is thus shown in a single scenario) achieves a 1.48x
speedup over IMLT hot but a 2.3x slowdown over the CPU
implementation in the hot case. This result is due to the
high penalty of off-chip RAM access, which is higher due
the lower operating frequency and to design delays between
memory bursts (due to HLS scheduling).

5 RELATED WORK

Two systems for machine learning prediction have been
introduced recently in the academia and the industry: Clip-
per [9] and TensorFlow Serving [10]. Clipper targets high
performance online ML prediction while making model
deployment easy. Clipper does not consider models as
composed by complex DAG of transformations, but instead
runs each pipeline as a single functional call in a separate
container process. Users can deploy models learned by
different frameworks, but this flexibility comes at the cost
of losing the control over the execution inside the pipeline
which instead relies on the target framework to run the
model. Clipper’s optimizations thereby focus on models as
black boxes: Clipper caches results for popular queries and
controls the batch size adaptively to achieve high through-

put while achieving low latency SLA. Those optimizations
lose the chance to utilize hardware acceleration.

Tensorflow (TF) serving is a library for serving ML mod-
els in Tensorflow framework. TF Serving batches multiple
prediction requests as Clipper, however, the execution of
pipelines is more flexible, allowing users to define custom
Servable for the part of pipelines. While Servables enable
the use of hardware accelerators and make execution faster,
there is no framework-level support for fine-grained control
over the pipeline execution as introduced in our implemen-
tation.

6 CONCLUSIONS AND FUTURE WORKS
This work introduced a framework for the acceleration of
generic ML prediction pipelines. To avoid runtime over-
heads and allow hardware-specific optimizations, we intro-
duced the notion of stages, observing that ML transforma-
tions usually occur in common sequences that can be or-
ganized into atomic execution and scheduling units. Based
on this, we implemented a case study in CPU and FPGA,
showing noticeable speedups over the initial baseline.

This work paves the way to more research in optimizing
ML prediction pipelines. The identification and generation
of stages is a promising future work. For the CPU imple-
mentation, a given pipeline can be generated automatically
starting from the code of its transformations: once the stage
division is performed, the stage generator can inline the
function calls and aggressively apply thorough optimiza-
tions.

In the FPGA case, similar techniques can be applied,
possibly with the aid of HLS tools. While a careful design
space exploration is fundamental to identify appropriate
performance/area trade-offs, higher gains come from ap-
propriately setting the transformations at training time, for
example by avoiding the dictionary lookup and allowing the
hash conflicts; similarly, caching the model weights on the
on-chip memory can enable low-latency, parallel lookups.
Modeling these characteristics and properly sizing those
stages in order to match a common throughput allows
maximizing the final performance.

REFERENCES
[1] K. Kara, D. Alistarh, G. Alonso, O. Mutlu and C. Zhang, FPGA-

Accelerated Dense Linear Machine Learning: A Precision-Convergence
Trade-Off, FCCM 2017, pp. 160-167.

[2] X. Lin, R.D. Shawn Blanton, and D. E. Thomas, Random Forest
Architectures on FPGA for Multiple Applications, GLSVLSI 2017, pp.
415-418.

[3] M. Abadi and A. Agarwal et al., TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems, white paper, 2015.

[4] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent
Michel, Bertrand Thirion, Olivier Grisel et al., Scikit-learn: Machine
Learning in Python, JMLR, volume 12, 2011.

[5] H2O website, https://www.h2o.ai
[6] Microsoft Brainwave project announcement,

www.microsoft.com/en-us/research/blog/
microsoft-unveils-project-brainwave/

[7] NumPY website, www.numpy.org/
[8] MurmerHash (Wikipedia), https://en.wikipedia.org/

wiki/MurmurHash/
[9] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin,

Joseph E. Gonzalez, Ion Stoica, Clipper: A Low-Latency Online Predic-
tion Serving System, NSDI, 2017.

[10] TensorFlow Serving website, https://www.tensorflow.org/
serving/


